Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Isabelle Snyder
- Sam Hollifield
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Siekmann
- Amir K Ziabari
- Chad Steed
- Diana E Hun
- Emilio Piesciorovsky
- Junghoon Chae
- Mingyan Li
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Subho Mukherjee
- Travis Humble
- Vincent Paquit
- Vivek Sujan
- Aaron Werth
- Aaron Wilson
- Ali Passian
- Ali Riza Ekti
- Brian Weber
- Bryan Maldonado Puente
- Corey Cooke
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mark Provo II
- Mary A Adkisson
- Michael Kirka
- Nance Ericson
- Nils Stenvig
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Ozgur Alaca
- Peter Wang
- Raymond Borges Hink
- Rob Root
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Varisara Tansakul
- Viswadeep Lebakula
- Yarom Polsky

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.