Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Sam Hollifield
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Olga S Ovchinnikova
- Sergei V Kalinin
- Travis Humble
- Aaron Werth
- Alexander I Wiechert
- Ali Passian
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Weber
- Costas Tsouris
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Gary Hahn
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin M Roccapriore
- Kevin Spakes
- Kunal Mondal
- Liam Collins
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Marti Checa Nualart
- Mary A Adkisson
- Maxim A Ziatdinov
- Md Inzamam Ul Haque
- Nance Ericson
- Neus Domingo Marimon
- Oscar Martinez
- Radu Custelcean
- Raymond Borges Hink
- Rob Root
- Samudra Dasgupta
- Srikanth Yoginath
- Stephen Jesse
- Steven Randolph
- T Oesch
- Varisara Tansakul
- Yarom Polsky
- Yongtao Liu

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Modern automobiles are operated by small computers that communicate critical information via a broadcast-based network architecture called controller area network (CAN).

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.