Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ali Passian
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Joseph Chapman
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Nicholas Peters
- Sam Hollifield
- Tomonori Saito
- Chad Steed
- Ethan Self
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Junghoon Chae
- Mingyan Li
- Muneer Alshowkan
- Robert Sacci
- Sergiy Kalnaus
- Travis Humble
- Aaron Werth
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anees Alnajjar
- Anisur Rahman
- Anna M Mills
- Brian Weber
- Brian Williams
- Chanho Kim
- Claire Marvinney
- Emilio Piesciorovsky
- Felipe Polo Garzon
- Gary Hahn
- Georgios Polyzos
- Harper Jordan
- Ilias Belharouak
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Mahim Mathur
- Mariam Kiran
- Mark Provo II
- Mary A Adkisson
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Oscar Martinez
- Peng Yang
- Raymond Borges Hink
- Rob Root
- Sai Krishna Reddy Adapa
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Varisara Tansakul
- Vera Bocharova
- Xiang Lyu
- Yarom Polsky

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.