Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Sam Hollifield
- Chad Steed
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Junghoon Chae
- Mingyan Li
- Scott Smith
- Travis Humble
- Aaron Werth
- Akash Jag Prasad
- Ali Passian
- Brian Gibson
- Brian Post
- Brian Weber
- Calen Kimmell
- Diana E Hun
- Easwaran Krishnan
- Emilio Piesciorovsky
- Emma Betters
- Gary Hahn
- Greg Corson
- Harper Jordan
- Isaac Sikkema
- James Manley
- Jamieson Brechtl
- Jason Jarnagin
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- Joe Rendall
- John Potter
- Joseph Olatt
- Josh B Harbin
- Karen Cortes Guzman
- Kashif Nawaz
- Kevin Spakes
- Kuma Sumathipala
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Mengjia Tang
- Muneeshwaran Murugan
- Nance Ericson
- Oscar Martinez
- Raymond Borges Hink
- Rob Root
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Tomonori Saito
- Tony L Schmitz
- Varisara Tansakul
- Vladimir Orlyanchik
- Yarom Polsky
- Zoriana Demchuk

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.