
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
The team conducted numerical studies to demonstrate the connection between the parameters of neural networks and the stochastic stability of DMMs.
A research team from ORNL and Pacific Northwest National Laboratory has developed a deep variational framework to learn an approximate posterior for uncertainty quantification.