
We present an intercomparison of a suite of high-resolution downscaled climate projections based on a six-member General Climate Models (GCM) ensemble from the 6th Phase of Coupled Models Intercomparison Project (CMIP6).
We present an intercomparison of a suite of high-resolution downscaled climate projections based on a six-member General Climate Models (GCM) ensemble from the 6th Phase of Coupled Models Intercomparison Project (CMIP6).
A web-based GUI for INTERSECT has been created which allows a user to configure an experiment on an electron microscope, setting such parameters as maximum number of steps for the machine learning algorithm to perform.
Researchers at 91°µÍø developed a new parallel performance portable algorithm for solving the Euclidean minimum spanning tree problem (EMST), capable of processing tens of millions of data points a second.
Researchers associated with the ExaAM project, a part of the Exascale Computing Project, developed ExaCA, a cellular automata (CA)-based model for grain-scale alloy solidification capable of simulation on both CPU and GPU architectures.
Researchers associated with the ExaAM project, a part of the Exascale Computing Project, developed ExaCA, a cellular automata (CA)-based model for grain-scale alloy solidification capable of simulation on both CPU and GPU architectures.
A collaborative team of researchers from 91°µÍø (ORNL) and four additional labs have published a new article in the Journal of Open Source Software paired with the release of a new version of the Cabana library for particle
A graph convolutional neural network (GCNN) was trained with millions of molecules to accurately predict molecular photo-optical properties by scaling data loading and training to over 1,500 GPUs on the Summit and Perlmutter supercomputers at the OLCF a
This measurement is correlated directly to ultrahigh energy-resolution monochromated electron energy-loss spectroscopy (EELS) measurements, which are able to directly measure the phonon response at the nano-length-scales of the long and short-period sup
Multimodel ensembling improves predictions and considers model uncertainties. In this study, we present a Bayesian Neural Network (BNN) ensemble approach for large-scale precipitation predictions based on a set of climate models.
A multidisciplinary team of researchers from 91°µÍø (ORNL) and the University of Texas at Austin developed a new framework for assessing the accuracy of approximate models of microstructure formation.