
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
Generative machine learning models, including GANs (Generative Adversarial Networks), are a powerful tool toward searching chemical space for desired functionalities.
A team at ORNL has demonstrated that the combination of transfer learning and semi-supervised learning can significantly reduce the amount of labeled data required to obtain strong performance in biomedical named entity recognition (NER) tasks.