Abstract
Balance among the sequential photophysical, photochemical, and biochemical reactions of photosynthesis is needed for converting fleeting energy in light to stable energy in chemical bonds. Any imbalance acts as either a bottleneck for limiting photosynthetic efficiency or an agent for inducing structural and functional damage to photosynthetic apparatus. Not only must each reaction be carefully regulated, but regulatory processes must also be coordinated across the reactions. However, regulations of different stages of photosynthesis have rarely been studied jointly. Non-photochemical quenching (NPQ) and stomatal conductance (gs) are key regulators of photophysical and biochemical reactions, respectively. Existing evidence suggests that the redox state of plastoquinone regulates gs and that the photochemical reactions are partially regulated by the ultrastructural dynamics of thylakoids induced by osmotic water fluxes in chloroplasts of land plants. To examine how these regulations are coordinated and feedback to each other, we simultaneously measured NPQ and gs and inferred the redox state of plastoquinone and the light-induced thylakoid swelling/shrinking on numerous C3 and C4 species. For all species measured, NPQ and gs covary with the redox states of the electron transport chain, particularly plastoquinone, and increase as thylakoid swelling is inferred. NPQ has the maximal sensitivity at the light intensity at which thylakoid is inferred to be fully swollen. Our findings suggest that plant energy and water use strategies are intimately linked by evolution, and studying the regulations of different photosynthetic stages as a whole can lead to new insights of the functioning of photosynthetic machinery in dynamic environments.