Abstract
Multiscale cation inhomogeneity has been a major hurdle in state-of-the-art formamidinium–caesium (FA–Cs) mixed-cation perovskites for achieving perovskite solar cells with optimal power conversion efficiencies and durability. Although the field has attempted to homogenize the overall distributions of FA–Cs in perovskite films from both plan and cross-sectional views, our understanding of grain-to-grain cation inhomogeneity and ability to tailor it—that is, spatially resolving the FA–Cs compositional difference between individual grains down to the nanoscale—are lacking. Here we reveal that as fundamental building blocks of a perovskite film, individual grains exhibit cationic compositions deviating from the prescribed ideal composition, severely limiting the interfacial optoelectronic properties and perovskite layer durability. This performance-limiting nanoscopic factor is linked to thermodynamic-driven morphological grooving, leading to a segmented surface landscape. At the grain triple junctions, grooves form nanoscale groove traps that hinder the mixing of solid-state cations across grains and thus retard inter-grain FA–Cs mixing. By rationally modulating the heterointerfacial energies, we reduced the depth of these nanoscale groove traps by a factor of three, significantly improving cation homogeneity. Perovskite solar cells with shallower nanoscale groove traps demonstrate enhanced power conversion efficiencies (25.62%) and improved stability under various standardized international protocols. Our work highlights the significance of resolving surface nano-morphologies for homogeneous properties of perovskites.