91°µÍø

Skip to main content
SHARE
Publication

Molecular Structure and Thermodynamics of CO2 and Water Adsorption on Mica

by Jingsong J Huang, Bobby G Sumpter
Publication Type
Journal
Journal Name
The Journal of Physical Chemistry B
Publication Date
Volume
NA

The adsorption of CO2 and water on clay surfaces plays a key role in applications, such as gas storage in saline aquifers and depleted hydrocarbon reservoirs, but is not yet fully understood. Here, we study the adsorption of CO2 and water vapor using Grand Canonical Monte Carlo and molecular dynamics simulations. At a bulk pressure of 100 bar, pure CO2 adsorbs strongly on mica and forms extensive layers next to it. CO2 adsorption is lowered substantially if introducing water vapor above mica and is largely eliminated when the relative humidity (RH) approaches about 60%. When pure water vapor is introduced above a mica surface, a subnanometer thick liquid water film develops on it to form apparent liquid–solid and liquid–vapor interfaces simultaneously. Using the identification of truly interfacial molecules (ITIM) analysis, we delineate how individual water layers develop in this film as RH increases. We highlight that the water film is spatially heterogeneous and the true liquid–vapor interface emerges only at an RH of 60–80%. Introducing 100 bar of CO2 into the water vapor above the mica surface modulates water adsorption nonlinearly: at RH = 0.01%, the water adsorption is reduced by ∼30%; as RH increases, the reduction is weakened, and eventually, enhancement of water adsorption by about 7% occurs at RH = 90%. These variations are attributed to the interplay of film thinning by high-pressure CO2, competition of mica surface sites by CO2 molecules, and energetic and entropic stabilization of interfacial water by CO2 molecules.