Abstract
Substitution of various rare earths R within the class of R2PdSi3 single crystals with hexagonal AlB2-type crystallographic structure reveals the systematic dependence of anisotropic magnetic properties governed by the interplay of crystal-electric field effects and magnetic two-ion interactions. Here we compare the floating zone (FZ) crystal growth with radiation heating of compounds with R = Tb, Tm, Pr, and Gd. The congruent melting behavior enabled moderate growth velocities of 3 to 5 mmh-1. The preferred growth directions are close to the basal plane of the hexagonal unit cell. The composition of the crystals, except of Tb2PdSi3, is slightly Pd-depleted with respect to the nominal composition 16.7 at.% Pd. Thin precipitates of RSi secondary phases were detected in the crystal matrix. Their phase fraction can be diminished by growth from Pd-rich melt compositions and annealing treatments. The compounds exhibit antiferromagnetic order below the N矇el temperatures TN: 23.6 K (Tb2PdSi3), 1.8 K (Tm2PdSi3), 2.17 K (Pr2PdSi3) and 22 K (Gd2PdSi3) with different grades of magnetic anisotropy.