For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For fundamental investigations of the structure and dynamics of materials using X-ray diffraction, including pioneering nanosecond resolution X-ray studies and the development of three-dimensional X-ray structural microscopy with submicron resolution.
For the development of advanced X-ray focusing and microfocusing optics and three-dimensional X-ray microscopy, and for pioneering research on the atomic and mesoscale structure of materials.
For outstanding contributions to the field of applied computer vision research and development that address important national interests in industrial and economic competitiveness, biomedical measurement science, and national security.
For experimental studies in atomic and molecular physics, particularly developments in the field of nonlinear laser spectroscopy and the physics of negative ions
Mook has conducted neutron scattering research on a broad spectrum of materials. He is best known for his pioneering research on the magnetic excitations of transition metal ferromagnets and the observation of itinerant electron effects in these materials.
For his internationally recognized work in the theory of alloys and his pioneering applications of massively parallel computing to first-principles calculations of the properties of materials.