For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
Greenbaum, the winner of the 1995 DOE Biological and Chemical Technologies Research Award, has done extensive experimental work in photosynthesis, the process by which green plants grow, and its application to renewable energy production.
For leadership in the development of high-temperature materials for energy and space applications, based on innovative use of physical metallurgy principles and basic physics knowledge to understand crystal structures and the mechanical properties of structural materials.
For significant and fundamental achievements in laser-based chemical measurement techniques, such as single molecule detection in liquids, and pioneering the efforts in the development of microfabricated chemical instrumentation, including the laboratory on a chip concept.
For basic studies in the fracture of and toughening mechanisms in ceramics and ceramic composites, in the establishment of the relationships between microstructure and composition and mechanical behavior, and in the development of advanced ceramic materials.