For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For significant impacts to the fields of synthetic biology and biological interfaces, innovations in the use of chemistry and nanotechnology to develop a molecular mechanistic understanding of complex biological systems, and pioneering approaches in chemical imaging through integration with mass spectrometry-based detection.
For revolutionizing the understanding of radiation interactions with metals and ceramic in nuclear energy applications and outstanding leadership and mentoring of the next generation of scientists.
For his pioneering efforts in silicon carbide–based power electronics, which have paved the way for vehicle and grid infrastructure advancements, enabling transformational achievements in wireless power transfer and electric drivetrain applications, and for the continuing significant impact his accomplishments will have on the global move toward the electrification and decarbonization of the mobility sector.
For ideas and techniques which have opened new frontiers in chemical research and now play major roles in the study, understanding, and use of photoionization and photoelectron spectroscopy in studies of "hot atom" chemistry and work with multiply charged molecular ions.
For pioneering work on energy conservation, including development of energy demand models, data bases, and analyses of energy use trends, which has contributed to federal and state energy policies and programs and to demand-side planning by electric utilities.
Mazur, who led the Theoretical and Applied Cryobiology Group in the Biology Division, concentrated his research on fundamental mechanisms responsible for injury to cells during freezing and warming. This research and other basic findings were described in his review paper "Freezing of Living Cells: Mechanisms and Implications."