For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For fundamental investigations of the structure and dynamics of materials using X-ray diffraction, including pioneering nanosecond resolution X-ray studies and the development of three-dimensional X-ray structural microscopy with submicron resolution.
For the development of advanced X-ray focusing and microfocusing optics and three-dimensional X-ray microscopy, and for pioneering research on the atomic and mesoscale structure of materials.
For outstanding contributions to the field of applied computer vision research and development that address important national interests in industrial and economic competitiveness, biomedical measurement science, and national security.
For ideas and techniques which have opened new frontiers in chemical research and now play major roles in the study, understanding, and use of photoionization and photoelectron spectroscopy in studies of "hot atom" chemistry and work with multiply charged molecular ions.
For pioneering work on energy conservation, including development of energy demand models, data bases, and analyses of energy use trends, which has contributed to federal and state energy policies and programs and to demand-side planning by electric utilities.
Mazur, who led the Theoretical and Applied Cryobiology Group in the Biology Division, concentrated his research on fundamental mechanisms responsible for injury to cells during freezing and warming. This research and other basic findings were described in his review paper "Freezing of Living Cells: Mechanisms and Implications."