For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For ideas and techniques which have opened new frontiers in chemical research and now play major roles in the study, understanding, and use of photoionization and photoelectron spectroscopy in studies of "hot atom" chemistry and work with multiply charged molecular ions.
For pioneering work on energy conservation, including development of energy demand models, data bases, and analyses of energy use trends, which has contributed to federal and state energy policies and programs and to demand-side planning by electric utilities.
Mazur, who led the Theoretical and Applied Cryobiology Group in the Biology Division, concentrated his research on fundamental mechanisms responsible for injury to cells during freezing and warming. This research and other basic findings were described in his review paper "Freezing of Living Cells: Mechanisms and Implications."
For contributions to the development of new concepts and advanced systems for power generation and conversion, through innovative designs of nuclear reactors for aircraft propulsion and space auxiliary power and concepts for thermonuclear fusion reactor power plants
For original studies of the genetic effects of radiation in mammals. A world authority on mammalian mutagenesis, he and co-workers provided the experimental basis for estimating the genetic hazards of radiation to man and for the corresponding recommendations of national and international standards bodies
For research extending the theoretical description of direct nuclear reactions and nuclear structure, as one of the first theorists to implement the much more refined and detailed treatment of experimental data made possible by computers