Filter News
Area of Research
News Topics
- (-) Neutron Science (5)
- (-) Physics (8)
- 3-D Printing/Advanced Manufacturing (1)
- Artificial Intelligence (2)
- Big Data (2)
- Bioenergy (1)
- Biology (2)
- Biomedical (1)
- Computer Science (26)
- Coronavirus (1)
- Cybersecurity (5)
- Energy Storage (1)
- Exascale Computing (7)
- Frontier (6)
- Fusion (1)
- Grid (3)
- High-Performance Computing (13)
- Isotopes (1)
- Machine Learning (1)
- Materials (9)
- Materials Science (12)
- Microscopy (2)
- Nanotechnology (8)
- Quantum Computing (46)
- Quantum Science (67)
- Security (3)
- Simulation (9)
- Summit (2)
Media Contacts
Connect with ORNL
Get ORNL News

Using the Frontier supercomputer at ORNL, researchers have developed a new technique that predicts nuclear properties in record detail. The study revealed how the structure of a nucleus relates to the force that holds it together. This understanding could advance efforts in quantum physics and across a variety of sectors, from to energy production to national security.

Researchers led by the University of Melbourne, Australia, have been nominated for the Association for Computing Machineryâs 2024 Gordon Bell Prize in supercomputing for conducting a quantum molecular dynamics simulation 1,000 times greater in size and speed than any previous simulation of its kind.

Researchers conduct largest, most accurate molecular dynamics simulations to date of two million correlated electrons using Frontier, the worldâs fastest supercomputer. The simulation, which exceed an exaflop using full double precision, is 1,000 times greater in size and speed than any quantum chemistry simulation of it's kind.

Researchers used quantum simulations to obtain new insights into the nature of neutrinos â the mysterious subatomic particles that abound throughout the universe â and their role in the deaths of massive stars.

A team of researchers associated with the Quantum Science Center headquartered at the Department of Energy's 91°”Íű has confirmed the presence of quantum spin liquid behavior in a new material with a triangular lattice, KYbSe2.

Timothy Gray of ORNL led a study that may have revealed an unexpected change in the shape of an atomic nucleus. The surprise finding could affect our understanding of what holds nuclei together, how protons and neutrons interact and how elements form.

Andrea Delgado is looking for elementary particles that seem so abstract, there appears to be no obvious short-term benefit to her research.

Scientists at ORNL used neutron scattering to determine whether a specific materialâs atomic structure could host a novel state of matter called a spiral spin liquid.

A team led by the U.S. Department of Energyâs 91°”Íű demonstrated the viability of a âquantum entanglement witnessâ capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

A UCLA-led team that discovered the first intrinsic ferromagnetic topological insulator â a quantum material that could revolutionize next-generation electronics â used neutrons at 91°”Íű to help verify their finding.