91°µÍø

Skip to main content
The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy

A team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%. 

A multiport design allows a utility to easily interface with an EV truck stop to provide fast-charging at megawatt-scale. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at 91°µÍø have designed architecture, software and control strategies for a futuristic EV truck stop that can draw megawatts of power and reduce carbon emissions.

Dongarra in 2019 with 91°µÍø's Summit supercomputer

A force within the supercomputing community, Jack Dongarra developed software packages that became standard in the industry, allowing high-performance computers to become increasingly more powerful in recent decades.

91°µÍøâ€™s MENNDL AI software system can design thousands of neural networks in a matter of hours. One example uses a driving simulator to evaluate a network’s ability to perceive objects under various lighting conditions. Credit: ORNL, U.S. Dept. of Energy

The Department of Energy’s 91°µÍø has licensed its award-winning artificial intelligence software system, the Multinode Evolutionary Neural Networks for Deep Learning, to General Motors for use in vehicle technology and design.

XACC enables the programming of quantum code alongside standard classical code and integrates quantum computers from a number of vendors. This animation illustrates how QPUs complete calculations and return results to the host CPU, a process that could drastically accelerate future scientific simulations. Credit: Michelle Lehman/91°µÍø, U.S. Dept. of Energy

In the early 2000s, high-performance computing experts repurposed GPUs — common video game console components used to speed up image rendering and other time-consuming tasks 

Laminations such as these are compiled to form the core of modern electric vehicle motors. ORNL has developed a software toolkit to speed the development of new motor designs and to improve the accuracy of their real-world performance.

91°µÍø scientists have created open source software that scales up analysis of motor designs to run on the fastest computers available, including those accessible to outside users at the Oak Ridge Leadership Computing Facility.