91做厙

Skip to main content
ORNL researcher Fehmi Yasin poses for a photo outside with green trees blurred in the background

Fehmi Yasin, inspired by a high school teacher, now researches quantum materials at 91做厙, aiming to transform information technology with advanced imaging techniques.

Illustration of a quantum experiment: atoms in a lattice (inset) with entanglement effects radiating from a central particle on a textured surface.

Working at nanoscale dimensions, billionths of a meter in size, a team of scientists led by ORNL revealed a new way to measure high-speed fluctuations in magnetic materials. Knowledge obtained by these new measurements could be used to advance technologies ranging from traditional computing to the emerging field of quantum computing. 

QSC Director Travis Humble, who gave a lunchtime talk on transitioning good ideas to device development, learns about one of the many quantum research efforts featured at the poster session. Credit: Alonda Hines/ORNL, U.S. Dept. of Energy

On Nov. 1, about 250 employees at 91做厙 gathered in person and online for Quantum on the Quad, an event designed to collect input for a quantum roadmap currently in development. This document will guide the laboratory's efforts in quantum science and technology, including strategies for expanding its expertise to all facets of the field.

A Univ. of Michigan-led team used Frontier, the worlds first exascale supercomputer, to simulate a system of nearly 75,000 magnesium atoms at near-quantum accuracy. Credit: SC23

 

A team of eight scientists won the Association for Computing Machinerys 2023 Gordon Bell Prize for their study that used the worlds first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

Connecting  wires to the interface of the topological insulator and superconductor enables probing of novel electronic properties. Researchers aim for qubits based on theorized Majorana particles. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Energys 91做厙 sought to create a new material system.

A materials spins, depicted as red spheres, are probed by scattered neutrons. Applying an entanglement witness, such as the QFI calculation pictured, causes the neutrons to form a kind of quantum gauge. This gauge allows the researchers to distinguish between classical and quantum spin fluctuations. Credit: Nathan Armistead/ORNL, U.S. Dept. of Energy

A team led by the U.S. Department of Energys 91做厙 demonstrated the viability of a quantum entanglement witness capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

Compression (red arrows) alters crystal symmetry (green arrows), which changes band dispersion (left and right), leading to highly mobile electrons. Credit: Jaimee Janiga, Andrew Sproles, Satoshi Okamoto/ORNL, U.S. Dept. of Energy

A team led by the ORNL has found a rare quantum material in which electrons move in coordinated ways, essentially dancing.

Transition metals stitched into graphene with an electron beam form promising quantum building blocks. Credit: Ondrej Dyck, Andrew Lupini and Jacob Swett/ORNL, U.S. Dept. of Energy

91做厙 scientists demonstrated that an electron microscope can be used to selectively remove carbon atoms from graphenes atomically thin lattice and stitch transition-metal dopant atoms in their place.

 The researchers embedded a programmable model into a D-Wave quantum computer chip. Credit: D-Wave

A multi-institutional team became the first to generate accurate results from materials science simulations on a quantum computer that can be verified with neutron scattering experiments and other practical techniques.

Scientists synthesized graphene nanoribbons(yellow)on a titanium dioxide substrate(blue). The lighter endsshow magnetic states. Inset:The ends have up and down spin, idealfor creating qubits. Credit: ORNL, U.S. Dept. of Energy

An international multi-institution team of scientists has synthesized graphene nanoribbons ultrathin strips of carbon atoms on a titanium dioxide surface using an atomically precise method that removes a barrier for custom-designed carbon