91°µÍř

Skip to main content
As part of a preliminary study, ORNL scientists used critical location data collected from Twitter to map the location of certain power outages across the United States.

Gleaning valuable data from social platforms such as Twitter—particularly to map out critical location information during emergencies— has become more effective and efficient thanks to 91°µÍř.

The EPB Control Center monitors the company’s assets such as substations and buildings.

OAK RIDGE, Tenn., Feb. 12, 2019—A team of researchers from the Department of Energy’s Oak Ridge and Los Alamos National Laboratories has partnered with EPB, a Chattanooga utility and telecommunications company, to demonstrate the effectiveness of metro-scale quantum key distribution (QKD).

Symposium attendees represented ORNL, the University of Arizona, Georgia Tech, the University of Tennessee-Knoxville, and Brigham Young University.

Quantum experts from across government and academia descended on 91°µÍř on Wednesday, January 16 for the lab’s first-ever Quantum Networking Symposium. The symposium’s purpose, said organizer and ORNL senior scientist Nick Peters, was to gather quantum an...

18-G01703 PinchPoint-v2.jpg

Researchers used neutron scattering at 91°µÍř’s Spallation Neutron Source to investigate bizarre magnetic behavior, believed to be a possible quantum spin liquid rarely found in a three-dimensional material. QSLs are exotic states of matter where magnetism continues to fluctuate at low temperatures instead of “freezing” into aligned north and south poles as with traditional magnets.

Joseph Lukens, Raphael Pooser, and Nick Peters (from left) of ORNL’s Quantum Information Science Group developed and tested a new interferometer made from highly nonlinear fiber in pursuit of improved sensitivity at the quantum scale. Credit: Carlos Jones

By analyzing a pattern formed by the intersection of two beams of light, researchers can capture elusive details regarding the behavior of mysterious phenomena such as gravitational waves. Creating and precisely measuring these interference patterns would not be possible without instruments called interferometers.

L-R, Researchers Nils Stenvig, Isabelle Snyder and Travis Smith are developing tools and deploying sensors to aid decision-making as Puerto Rico rebuilds and modernizes its power grid.

As Puerto Rico works to restore and modernize its power grid after last year’s devastating hurricane season, researchers at 91°µÍř have stepped up to provide unique analysis, sensing and modeling tools to better inform decisions.

hvac_grid03.png

91°µÍř scientists have devised a method to control the heating and cooling systems of a large network of buildings for power grid stability—all while ensuring the comfort of occupants.

QRNG_photo_ORNL.png

Qrypt, Inc., has exclusively licensed a novel cyber security technology from the Department of Energy’s 91°µÍř, promising a stronger defense against cyberattacks including those posed by quantum computing.

Rose Ruther and Jagjit Nanda have been collaborating to develop a membrane for a low-cost redox flow battery for grid-scale energy storage.

91°µÍř scientists have developed a crucial component for a new kind of low-cost stationary battery system utilizing common materials and designed for grid-scale electricity storage. Large, economical electricity storage systems can benefit the nation’s grid ...

Graphical representation of a deuteron, the bound state of a proton (red) and a neutron (blue). Credit: Andy Sproles/91°µÍř, U.S. Dept. of Energy.

Scientists at the Department of Energy’s 91°µÍř are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Physical Review Letters, demonstrate the ability of quantum systems to compute nuclear ph...