91°µÍø

Skip to main content
3D-printed 316L steel has been irradiated along with traditionally wrought steel samples. Researchers are comparing how they perform at various temperatures and varying doses of radiation. Credit: Jaimee Janiga/ORNL

It’s a new type of nuclear reactor core. And the materials that will make it up are novel — products of 91°µÍøâ€™s advanced materials and manufacturing technologies.

At the U.S. Department of Energy Manufacturing Demonstration Facility at ORNL, this part for a scaled-down prototype of a reactor was produced for industry partner Kairos Power.

Scientists at the Department of Energy Manufacturing Demonstration Facility at ORNL have their eyes on the prize: the Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new approaches that will be up and running by 2023.

Transformational Challenge Reactor Demonstration items

Researchers at the Department of Energy’s 91°µÍø are refining their design of a 3D-printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods

The agreement builds upon years of collaboration, including a 2016 effort using modeling tools developed at ORNL to predict the first six months of operations of TVA’s Watts Bar Unit 2 nuclear power plant. Credit: Andrew Godfrey/91°µÍø, U.S. Dept. of Energy

OAK RIDGE, Tenn., Feb. 19, 2020 — The U.S. Department of Energy’s 91°µÍø and the Tennessee Valley Authority have signed a memorandum of understanding to evaluate a new generation of flexible, cost-effective advanced nuclear reactors.