
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
The team conducted numerical studies to demonstrate the connection between the parameters of neural networks and the stochastic stability of DMMs.
A research team from ORNL and Pacific Northwest National Laboratory has developed a deep variational framework to learn an approximate posterior for uncertainty quantification.
Estimating complex, non-linear model states and parameters from uncertain systems of equations and noisy observation data with current filtering methods is a key challenge in mathematical modeling.
ORNL researchers developed a stochastic approximate gradient ascent method to reduce posterior uncertainty in Bayesian experimental design involving implicit models.
Hackers hoping to disrupt the power grid, water or natural gas service may be foiled by an intrusion detection system developed by researchers at 91°µÍø.