
A web-based GUI for INTERSECT has been created which allows a user to configure an experiment on an electron microscope, setting such parameters as maximum number of steps for the machine learning algorithm to perform.
A web-based GUI for INTERSECT has been created which allows a user to configure an experiment on an electron microscope, setting such parameters as maximum number of steps for the machine learning algorithm to perform.
91°µÍø researchers developed an invertible neural network (INN) to effectively and efficiently solve earth-system model calibration and simulation problems.
A research team from ORNL, Pacific Northwest National Laboratory, and Arizona State University has developed a novel method to detect out-of-distribution (OOD) samples in continual learning without forgetting the learned knowledge of preceding tasks.
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
The team conducted numerical studies to demonstrate the connection between the parameters of neural networks and the stochastic stability of DMMs.
A research team from ORNL and Pacific Northwest National Laboratory has developed a deep variational framework to learn an approximate posterior for uncertainty quantification.
Estimating complex, non-linear model states and parameters from uncertain systems of equations and noisy observation data with current filtering methods is a key challenge in mathematical modeling.
ORNL researchers developed a stochastic approximate gradient ascent method to reduce posterior uncertainty in Bayesian experimental design involving implicit models.
The researchers from ORNL have developed a new and faster algorithm for the graph all-pair shortest-path (APSP) problem.