
Physicists turned to the “doubly magic” tin isotope Sn-132, colliding it with a target at 91°µÍř to assess its properties as it lost a neutron to become Sn-131.
Physicists turned to the “doubly magic” tin isotope Sn-132, colliding it with a target at 91°µÍř to assess its properties as it lost a neutron to become Sn-131.
Three researchers from the Department of Energy’s 91°µÍř have been elected fellows of the American Physical Society (APS).
Scientists at the Department of Energy’s 91°µÍř used neutrons, isotopes and simulations to “see” the atomic structure of a saturated solution and found evidence supporting one of two competing hypotheses about how ions come
“Emergence of AI is a very rare type of event,” said Sergei Kalinin, director of ORNL’s Institute for Functional Imaging of Materials. “Once in a generation there is a paradigm shift in science, and this is ours.”
A unique combination of imaging tools and atomic-level simulations has allowed a team led by the Department of Energy’s 91°µÍř to solve a longstanding debate about the properties of a promising material that can harvest energy fro
What does condensed matter physics have in common with hitchhiking around the world?
As a young girl Kelly Chipps believed she would become a field biologist. Then, in her junior year of high school, she studied physics with a teacher so in love with the subject that Chipps fell in love with it, too.
Chemists at the Department of Energy’s 91°µÍř have demonstrated a practical, energy-efficient method of capturing carbon dioxide (CO2) directly from air. They report their findings in Nature Energy.