
Domain dynamics in polycrystalline materials are explored using a workflow combining deep learning-based segmentation of domain structures with non-linear dimensionality reduction using multilayer rotationally invariant autoencoders (rVAE).
Domain dynamics in polycrystalline materials are explored using a workflow combining deep learning-based segmentation of domain structures with non-linear dimensionality reduction using multilayer rotationally invariant autoencoders (rVAE).
A multi-institutional team of ORNL has utilized the latest computational algorithms and parallelization techniques to enable faster than real-time simulations and applied it to the power system network whose time-domain model represents very large and h
Researchers from ORNL, Stanford University, and Purdue University developed and demonstrated a novel, fully functional quantum local area network (QLAN).