91°µĶų

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

21 - 30 of 247 Results

Illustration of a hydrogen atom.

Scientists at ORNL used neutrons to end a decades-long debate about an enzyme cancer uses.

ORNL's Spallation Neutron Source, the nation’s leading source of pulsed neutron beams for research, was recently restarted after nine months of upgrade work. Credit: ORNL, U.S. Dept. of Energy

ORNL's Spallation Neutron Source, the nation’s leading source of pulsed neutron beams for research, was recently restarted after nine months of upgrade work. 

Takeshi Egami stands at his workstation at ORNL’s Spallation Neutron Source where he used novel experimental methods to propose the density wave theory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Distinguished materials scientist Takeshi Egami has spent his career revealing the complex atomic structure of metallic glass and other liquids — sometimes sharing theories with initially resistant minds in the scientific community. 

Matthew Loyd

ORNL’s Matthew Loyd will receive a Department of Energy Office of Science Early Career Research award. 

Robert Saethre has worked to create a LEGO model of the ring injection region of the SNS’ pulsed accelerator that features the new Proton Power Upgrade magnets and vacuum chambers.

Using LEGOĀ® bricks, Robert Saethre has worked to create a model of the ring injection region of the SNS pulsed accelerator that features the new Proton Power Upgrade magnets and vacuum chambers. 

Conceptual art shown here depicts a ligand adapting to its environment.

Researchers at the Department of Energy’s 91°µĶų have found a chemical ā€œchameleonā€ that could improve the process used to purify rare-earth metals used in clean energy, medical and national security applications.

ORNL scientists used molecular dynamics simulations, exascale computing, lab testing and analysis to accelerate the development of an energy-saving method to produce nanocellulosic fibers.

A team led by scientists at ORNL identified and demonstrated a method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%, using simulations on the lab’s supercomputers and follow-on analysis.

Scientists used neutrons to study the role of ergosterol (green), a cholesterol-like lipid found in the lipid bilayer (yellow) of fungi, which could help in combatting fungal infections that each year cause almost 1.7 million fatalities globally.

A group of scientists at the Department of Energy’s 91°µĶų have conducted neutron scattering research to reveal key information about fungus cell membranes that could aid in developing new antifungal treatments. 

Illustration of oscillating UCI3 bonds

Researchers for the first time documented the specific chemistry dynamics and structure of high-temperature liquid uranium trichloride salt, a potential nuclear fuel source for next-generation reactors. 

VENUS, slated for user beamtime next fall, dons ORNL green to symbolize involvement from scientists and researchers across ORNL.

DOE commissioned a neutron imaging instrument, VENUS, at the Spallation Neutron Source in July. VENUS instrument scientists will use AI to deliver 3D models to researchers in half the time it typically takes.