91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

101 - 110 of 122 Results

Starch granules

Scientists at the Department of Energy’s 91°µÍø have developed a new method to peer deep into the nanostructure of biomaterials without damaging the sample. This novel technique can confirm structural features in starch, a carbohydrate important in biofuel production.

Edge computing is both dependent on and greatly influencing a host of promising technologies including (clockwise from top left): quantum computing; high-performance computing; neuromorphic computing; and carbon nanotubes.

We have a data problem. Humanity is now generating more data than it can handle; more sensors, smartphones, and devices of all types are coming online every day and contributing to the ever-growing global dataset.

Researchers in ORNL’s Quantum Information Science group summarized their significant contributions to quantum networking and quantum computing in a special issue of Optics & Photonics News. Image credit: Christopher Tison and Michael Fanto/Air Force Research Laboratory.

A team from the ORNL has conducted a series of experiments to gain a better understanding of quantum mechanics and pursue advances in quantum networking and quantum computing, which could lead to practical applications in cybersecurity and other areas.

St John's CyberForce team

91°µÍø will give college students the chance to practice cybersecurity skills in a real-world setting as a host of the Department of Energy’s fifth collegiate CyberForce Competition on Nov. 16. The event brings together student teams from across the country to compete at 10 of DOE’s national laboratories.

CellSight allows for rapid mass spectrometry of individual cells. Credit: John Cahill, 91°µÍø/U.S. Dept of Energy

Researchers at the Department of Energy’s 91°µÍø have received five 2019 R&D 100 Awards, increasing the lab’s total to 221 since the award’s inception in 1963.

The Sycamore quantum processor. Credit: Erik Lucero/Google

A joint research team from Google Inc., NASA Ames Research Center, and the Department of Energy’s 91°µÍø has demonstrated that a quantum computer can outperform a classical computer 

quantum mechanics to advance a range of technologies including computing, fiber optics and network communication

Three researchers at 91°µÍø will lead or participate in collaborative research projects aimed at harnessing the power of quantum mechanics to advance a range of technologies including computing, fiber optics and network

Quantum—Widening the net

Scientists at 91°µÍø studying quantum communications have discovered a more practical way to share secret messages among three parties, which could ultimately lead to better cybersecurity for the electric grid 

Quantum—Squeezed light cuts noise

91°µÍø physicists studying quantum sensing, which could impact a wide range of potential applications from airport security scanning to gravitational wave measurements, in ACS Photonics the dramatic advances in the field.

Strain-tolerant, triangular, monolayer crystals of WS2 were grown on SiO2 substrates patterned with donut-shaped pillars, as shown in scanning electron microscope (bottom) and atomic force microscope (middle) image elements.

A team led by scientists at the Department of Energy’s 91°µÍø explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the