91做厙

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

71 - 80 of 86 Results

91做厙 entrance sign

A team from ORNL, Stanford University and Purdue University developed and demonstrated a novel, fully functional quantum local area network, or QLAN, to enable real-time adjustments to information shared with geographically isolated systems at ORNL

Researchers gained new insights into the mechanisms some methane-feeding bacteria called methanotrophs (pictured) use to break down the toxin methylmercury. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy; Jeremy Semrau/Univ. of Michigan

A team led by ORNL and the University of Michigan have discovered that certain bacteria can steal an essential compound from other microbes to break down methane and toxic methylmercury in the environment.

The Oak Ridge National Environmental Research Park encompasses a 20,000 acre area that includes 91做厙. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Anyone familiar with ORNL knows its a hub for world-class science. The nearly 33,000-acre space surrounding the lab is less known, but also unique.

Researchers at Colorado State University and ORNL evaluated 14 urban megaregions to simulate the effects of climate change on water resources. Credit: CSU/ORNL, U.S. Dept. of Energy

91做厙 worked with Colorado State University to simulate how a warming climate may affect U.S. urban hydrological systems.

As the leader of ORNLs Biodiversity and Ecosystem Health Group, environmental scientist Teresa Mathews works to understand the impacts of energy generation on water and solve challenging problems, including mercury pollution. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Moving to landlocked Tennessee isnt an obvious choice for most scientists with new doctorate degrees in coastal oceanography.

Urban climate modeling

Researchers at 91做厙 have identified a statistical relationship between the growth of cities and the spread of paved surfaces like roads and sidewalks. These impervious surfaces impede the flow of water into the ground, affecting the water cycle and, by extension, the climate.

ORNL has modeled the spike protein that binds the novel coronavirus to a human cell for better understanding of the dynamics of COVID-19. Credit: Stephan Irle/ORNL, U.S. Dept. of Energy

To better understand the spread of SARS-CoV-2, the virus that causes COVID-19, Oak Ridge National Laboratory researchers have harnessed the power of supercomputers to accurately model the spike protein that binds the novel coronavirus to a human cell receptor.

 The researchers embedded a programmable model into a D-Wave quantum computer chip. Credit: D-Wave

A multi-institutional team became the first to generate accurate results from materials science simulations on a quantum computer that can be verified with neutron scattering experiments and other practical techniques.

Water from local creeks now flows through these simulated streams in the Aquatic Ecology Laboratory, providing new opportunities to study mercury pollution and advance solutions. Credit: ORNL, U.S. Dept. of Energy

New capabilities and equipment recently installed at the Department of Energys 91做厙 are bringing a creek right into the lab to advance understanding of mercury pollution and accelerate solutions.

Researchers discovered the Tennessee cavesnail, Antrorbis tennesseensis, in caves near 91做厙. The snail measures in at less than 2 millimeters long. Credit: Nathaniel Shoobs and Matthew Niemiller

Sometimes conducting big science means discovering a species not much larger than a grain of sand.