91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 284 Results

A view inside a JuggerBot 3D printer at the manufacturing demonstration facility. You can see the machine 3D printing material in a wheel format

ORNL and JuggerBot 3D, an industrial 3D printer equipment manufacturer, have launched their second research and development collaboration through the Manufacturing Demonstration Facility Technical Collaboration Program.

Illustration of melting point of lithium chloride, which is shown with green and blue structures in two rows.

Scientists have developed a new machine learning approach that accurately predicted critical and difficult-to-compute properties of molten salts, materials with diverse nuclear energy applications. 

Two ORNL researchers inspect carbon fiber materials - one black rectangular sheet and one see-through sheet of film.

Researchers at ORNL have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites – an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials. 

Large group photo outside on stairs at the Quantum Science Center all hands meeting.

Members of the Quantum Science Center, or QSC, gathered at an all-hands meeting in Baton Rouge, Louisiana, in mid-May to reflect on the remarkable accomplishments from the past five years and to prepare for what members hope to be the next five years of the center.

Using a toolpath strategy for weight reduction, two near-net shape dies were manufactured using a gas metal arc welding additive manufacturing process at the Lincoln Electric Additive Solutions facility. Credit: Lincoln Electric

Recent advancements at ORNL show that 3D-printed metal molds offer a faster, more cost-effective and flexible approach to producing large composite components for mass-produced vehicles than traditional tooling methods.

Paul Kairys

Paul is exploring the next frontier: bridging quantum computing with neutron science. His research aims to integrate quantum algorithms with neutron scattering experiments, opening new possibilities for understanding materials at an atomic level.

ORNL's Quantum Science Center Director is speaking to a attendee at Purdue University Quantum Science Center Summer School poster presentation

The fifth annual Quantum Science Center, or QSC, Summer School at Purdue University, held Apr. 21 through Apr. 25, 2025, welcomed its largest group of students to date. Experts from industry, academia and national laboratories gathered at the Purdue Quantum Science and Engineering Institute to share their research in multiple areas of quantum science.

Oak Ridge High School student is working on an 3D printing machine donated by UT-Battelle

UT-Battelle has contributed up to $475,000 for the purchase and installation of advanced manufacturing equipment to support a program at Tennessee’s Oak Ridge High School that gives students direct experience with the AI- and robotics-assisted workplace of the future. 

Illustration of a real-time simulation showing a metallic nanoparticle’s optical response to light using RT-TDDFT. The image depicts electron oscillations and surrounding electromagnetic fields. Four inset panels represent applications: plasmon-enhanced biosensing, quantum computing, photochemical catalysis, and cancer detection through photothermal therapy.

A research team from the Department of Energy’s 91°µÍø, in collaboration with North Carolina State University, has developed a simulation capable of predicting how tens of thousands of electrons move in materials in real time, or natural time rather than compute time.

Artist's rendering depicts a cantilever's sharp tip in an atomic force microscope scanning a material's surface to measure domain wall movement

As demand for energy-intensive computing grows, researchers at ORNL have developed a new technique that lets scientists see how interfaces move in promising materials for computing and other applications. The method, now available to users at the Center for Nanophase Materials Sciences at ORNL, could help design dramatically more energy-efficient technologies.