91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 5 of 5 Results

Illustration of a hydrogen atom.

Scientists at ORNL used neutrons to end a decades-long debate about an enzyme cancer uses.

Even small movements of hydrogen, shown in yellow, were found to cause large energy shifts in the attached iron atoms, shown in silver, which could be of interest in creating novel chemical reactions. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Researchers from Yale University and ORNL collaborated on neutron scattering experiments to study hydrogen atom locations and their effects on iron in a compound similar to those commonly used in industrial catalysts.

Mars Rover 2020

More than 50 current employees and recent retirees from ORNL received Department of Energy Secretary’s Honor Awards from Secretary Jennifer Granholm in January as part of project teams spanning the national laboratory system. The annual awards recognized 21 teams and three individuals for service and contributions to DOE’s mission and to the benefit of the nation.

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s 91°µÍø, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Recent research involving 91°µÍøâ€™s Spallation Neutron Source demonstrates crystal-like heat conduction in a solid-liquid hybrid, AgCrSe2.

Research by an international team led by Duke University and the Department of Energy’s 91°µÍø scientists could speed the way to safer rechargeable batteries for consumer electronics such as laptops and cellphones.