91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 38 Results

Illustration of the optimized zeolite catalyst, or NbAlS-1, which enables a highly efficient chemical reaction to create butene, a renewable source of energy, without expending high amounts of energy for the conversion. Credit: Jill Hemman, 91°µÍø/U.S. Dept. of Energy

Illustration of the optimized zeolite catalyst, or NbAlS-1, which enables a highly efficient chemical reaction to create butene, a renewable source of energy, without expending high amounts of energy for the conversion. Credit: Jill Hemman, 91°µÍø/U.S. Dept. of Energy

Argon pellet injection text

As scientists study approaches to best sustain a fusion reactor, a team led by 91°µÍø investigated injecting shattered argon pellets into a super-hot plasma, when needed, to protect the reactor’s interior wall from high-energy runaway electrons.

Illustration of a nitrogen dioxide molecule (depicted in blue and purple) captured in a nano-size pore of an MFM-520 metal-organic framework material as observed using neutron vibrational spectroscopy at 91°µÍø. Image credit: ORNL/Jill Hemman

An international team of scientists, led by the University of Manchester, has developed a metal-organic framework, or MOF, material

SNS researchers

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated.

91°µÍø scientists have developed an experiment for testing potential materials for use in interplanetary travel. The experiment exposes prototype materials to temperatures over 2,400 degrees Celsius with only 300 watts of input electrical power. Credit: Carlos Jones, 91°µÍø, U.S. Dept. of Energy

If humankind reaches Mars this century, an 91°µÍø-developed experiment testing advanced materials for spacecraft may play a key role. 

Jason Nattress, an Alvin M. Weinberg Fellow, is developing new nuclear material inspection and identification techniques to improve scanning times for ocean-going cargo containers.

Jason Nattress, an Alvin M. Weinberg Fellow at the Department of Energy’s 91°µÍø, found his calling on a nuclear submarine.

Cropped INFUSE logo

The U.S. Department of Energy announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development.

Background image represents the cobalt oxide structure Goodenough demonstrated could produce four volts of electricity with intercalated lithium ions. This early research led to energy storage and performance advances in myriad electronic applications. Credit: Jill Hemman/91°µÍø, U.S. Dept. of Energy

Two of the researchers who share the Nobel Prize in Chemistry announced Wednesday—John B. Goodenough of the University of Texas at Austin and M. Stanley Whittingham of Binghamton University in New York—have research ties to ORNL.

Neutrons—Insight into human tissue

Researchers used neutron scattering at 91°µÍøâ€™s Spallation Neutron Source and High Flux Isotope Reactor to better understand how certain cells in human tissue bond together.

The configurational ensemble (a collection of 3D structures) of an intrinsically disordered protein, the N-terminal of c-Src kinase, which is a major signaling protein in humans. Credit: 91°µÍø, U.S. Dept. of Energy.

Using the Titan supercomputer and the Spallation Neutron Source at the Department of Energy’s 91°µÍø, scientists have created the most accurate 3D model yet of an intrinsically disordered protein, revealing the ensemble of its atomic-level structures.