Filter News
Area of Research
News Type
News Topics
- (-) Fusion (5)
- (-) Space Exploration (4)
- 3-D Printing/Advanced Manufacturing (15)
- Advanced Reactors (7)
- Artificial Intelligence (12)
- Big Data (7)
- Bioenergy (9)
- Biomedical (5)
- Biotechnology (1)
- Clean Water (5)
- Composites (2)
- Computer Science (35)
- Cybersecurity (5)
- Energy Storage (8)
- Environment (19)
- Exascale Computing (2)
- Frontier (2)
- Grid (5)
- Isotopes (1)
- Machine Learning (5)
- Materials Science (20)
- Mercury (1)
- Microscopy (5)
- Molten Salt (1)
- Nanotechnology (6)
- Neutron Science (21)
- Nuclear Energy (17)
- Physics (6)
- Polymers (2)
- Quantum Science (10)
- Security (2)
- Summit (9)
- Transportation (12)
ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.
1 - 9 of 9 Results

As scientists study approaches to best sustain a fusion reactor, a team led by 91°µÍř investigated injecting shattered argon pellets into a super-hot plasma, when needed, to protect the reactor’s interior wall from high-energy runaway electrons.

Kathy McCarthy has been named director of the US ITER Project Office at the Department of Energy’s 91°µÍř, effective March 2020.

If humankind reaches Mars this century, an 91°µÍř-developed experiment testing advanced materials for spacecraft may play a key role.

The U.S. Department of Energy announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development.

The type of vehicle that will carry people to the Red Planet is shaping up to be “like a two-story house you’re trying to land on another planet.

Using additive manufacturing, scientists experimenting with tungsten at 91°µÍř hope to unlock new potential of the high-performance heat-transferring material used to protect components from the plasma inside a fusion reactor. Fusion requires hydrogen isotopes to reach millions of degrees.

Using the Titan supercomputer at 91°µÍř, a team of astrophysicists created a set of galactic wind simulations of the highest resolution ever performed. The simulations will allow researchers to gather and interpret more accurate, detailed data that elucidates how galactic winds affect the formation and evolution of galaxies.

Scientists have tested a novel heat-shielding graphite foam, originally created at 91°µÍř, at Germany’s Wendelstein 7-X stellarator with promising results for use in plasma-facing components of fusion reactors.

By automating the production of neptunium oxide-aluminum pellets, 91°µÍř scientists have eliminated a key bottleneck when producing plutonium-238 used by NASA to fuel deep space exploration.