91°µÍř

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 7 of 7 Results

Representatives from The University of Toledo and the U.S. Department of Energy’s 91°µÍř (ORNL) in Tennessee are teaming up to conduct collaborative automotive materials research.” Credit: University of Toledo

ORNL and The University of Toledo have entered into a memorandum of understanding for collaborative research.

Layering on the strength

A team including 91°µÍř and University of Tennessee researchers demonstrated a novel 3D printing approach called Z-pinning that can increase the material’s strength and toughness by more than three and a half times compared to conventional additive manufacturing processes.

Materials—Engineering heat transport

Scientists have discovered a way to alter heat transport in thermoelectric materials, a that may ultimately improve energy efficiency as the materials

ORNL researcher Karren More has been elected fellow of the Microscopy Society of America.

OAK RIDGE, Tenn., March 22, 2019 – Karren Leslie More, a researcher at the Department of Energy’s 91°µÍř, has been elected fellow of the Microscopy Society of America (MSA) professional organization.

To develop complex materials with superior properties, Vera Bocharova uses diverse methods including broadband dielectric spectroscopy. Credit: 91°µÍř, U.S. Dept. of Energy; photographer Jason Richards

Vera Bocharova at the Department of Energy’s 91°µÍř investigates the structure and dynamics of soft materials.

ORNL alanine_graphic.jpg

OAK RIDGE, Tenn., Jan. 31, 2019—A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale—while keeping the sample intact—could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life. 

Picture2.png

91°µÍř scientists studying fuel cells as a potential alternative to internal combustion engines used sophisticated electron microscopy to investigate the benefits of replacing high-cost platinum with a lower cost, carbon-nitrogen-manganese-based catalyst.