91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 15 Results

Costas Tsouris portrait

While Tsouris’ water research is diverse in scope, its fundamentals are based on basic science principles that remain largely unchanged, particularly in a mature field like chemical engineering.

The Sycamore quantum processor. Credit: Erik Lucero/Google

A joint research team from Google Inc., NASA Ames Research Center, and the Department of Energy’s 91°µÍø has demonstrated that a quantum computer can outperform a classical computer 

Water and energy are inextricably linked, yet in our 20th-century water systems we use freshwater once then throw it away. With innovations designed to enhance desalination technologies, agricultural runoff, produced water from industry, and inland brackish groundwater that are now seen as untreatable could all be sources of clean, safe, and affordable water.

The National Alliance for Water Innovation, a partnership of the Department of Energy’s 91°µÍø, other national labs, university and private sector partners, has been awarded a five-year, $100 million Energy-Water Desalination Hub by DOE to address water security issues in the United States.

quantum mechanics to advance a range of technologies including computing, fiber optics and network communication

Three researchers at 91°µÍø will lead or participate in collaborative research projects aimed at harnessing the power of quantum mechanics to advance a range of technologies including computing, fiber optics and network

Desalination process

A new method developed at 91°µÍø improves the energy efficiency of a desalination process known as solar-thermal evaporation. 

Quantum—Widening the net

Scientists at 91°µÍø studying quantum communications have discovered a more practical way to share secret messages among three parties, which could ultimately lead to better cybersecurity for the electric grid 

Quantum—Squeezed light cuts noise

91°µÍø physicists studying quantum sensing, which could impact a wide range of potential applications from airport security scanning to gravitational wave measurements, in ACS Photonics the dramatic advances in the field.

Strain-tolerant, triangular, monolayer crystals of WS2 were grown on SiO2 substrates patterned with donut-shaped pillars, as shown in scanning electron microscope (bottom) and atomic force microscope (middle) image elements.

A team led by scientists at the Department of Energy’s 91°µÍø explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the 

Pictured in this early conceptual drawing, the Translational Research Capability planned for 91°µÍø will follow the design of research facilities constructed during the laboratory’s modernization campaign.

OAK RIDGE, Tenn., May 7, 2019—Energy Secretary Rick Perry, Congressman Chuck Fleischmann and lab officials today broke ground on a multipurpose research facility that will provide state-of-the-art laboratory space 

ORNL collaborator Hsiu-Wen Wang led the neutron scattering experiments at the Spallation Neutron Source to probe complex electrolyte solutions that challenge nuclear waste processing at Hanford and other sites. Credit: Genevieve Martin/91°µÍø, U.S. Dept. of Energy.

Researchers at the Department of Energy’s 91°µÍø, Pacific Northwest National Laboratory and Washington State University teamed up to investigate the complex dynamics of low-water liquids that challenge nuclear waste processing at federal cleanup sites.