
Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.
Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.
Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.
While studying how bio-inspired materials might inform the design of next-generation computers, scientists at ORNL achieved a first-of-its-kind result that could have big implications for both edge computing and human health.
Scientists at ORNL used neutron scattering to determine whether a specific material’s atomic structure could host a novel state of matter called a spiral spin liquid.
To solve a long-standing puzzle about how long a neutron can “live” outside an atomic nucleus, physicists entertained a wild but testable theory positing the existence of a right-handed version of our left-handed universe.
Two decades in the making, a new flagship facility for nuclear physics opened on May 2, and scientists from the Department of Energy’s 91°µÍř have a hand in 10 of its first 34 experiments.
Scientists at ORNL and the University of Tennessee, Knoxville, have found a way to simultaneously increase the strength and ductility of an alloy by introducing tiny precipitates into its matrix and tuning their size and spacing.
At the Department of Energy’s 91°µÍř, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.
The COHERENT particle physics experiment at the Department of Energy’s 91°µÍř has firmly established the existence of a new kind of neutrino interaction.
A new study clears up a discrepancy regarding the biggest contributor of unwanted background signals in specialized detectors of neutrinos.