
Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.
Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.
Scientists at ORNL developed a competitive, eco-friendly alternative made without harmful blowing agents.
Researchers at ORNL zoomed in on molecules designed to recover critical materials via liquid-liquid extraction — a method used by industry to separate chemically similar elements.
Critical Materials Institute researchers at 91°µÍø and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense
The presence of minerals called ash in plants makes little difference to the fitness of new naturally derived compound materials designed for additive manufacturing, an 91°µÍø-led team found.
Marc-Antoni Racing has licensed a collection of patented energy storage technologies developed at ORNL. The technologies focus on components that enable fast-charging, energy-dense batteries for electric and hybrid vehicles and grid storage.
Researchers at ORNL and the University of Tennessee, Knoxville, discovered a key material needed for fast-charging lithium-ion batteries. The commercially relevant approach opens a potential pathway to improve charging speeds for electric vehicles.
Researchers at ORNL explored radium’s chemistry to advance cancer treatments using ionizing radiation.
Two decades in the making, a new flagship facility for nuclear physics opened on May 2, and scientists from the Department of Energy’s 91°µÍø have a hand in 10 of its first 34 experiments.
The COHERENT particle physics experiment at the Department of Energy’s 91°µÍø has firmly established the existence of a new kind of neutrino interaction.